Please wait a minute...
浙江大学学报(工学版)
化学工程     
MW燃煤电厂钒钛系脱硝催化剂失活原因分析
陈艳萍1,吴思明1, 2,卢慧剑1,魏博伦1,何奕1,施耀1
1. 浙江大学 化学工程与生物工程学系,工业生态与环境研究所,浙江 杭州 310027;2.国电浙江北仑第一发电有限公司,浙江 宁波 315800
Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant
CHEN Yan-ping1, WU Si-ming1,2, LU Hui-jian1, WEI Bo-lun1, HE Yi1, SHI Yao1
1. Department of Chemical and Biological Engineering, Industrial Ecology and Environment Research Institute,Zhejiang University, Hangzhou 310027, China;2. Guodian Zhejiang Beilun No.1 Power Gereration Co.LTD, Ningbo 315800, China
 全文: PDF(1523 KB)   HTML
摘要:

以某燃煤电厂1 000 MW发电机组选择性催化还原(SCR)装置使用前和运行25 000 h后的烟气脱硝催化剂为研究对象,对催化剂进行脱硝活性测试,同时应用扫描电镜(SEM)、X射线衍射(XRD)分析、比表面积和孔容(BET)分析、X射线荧光光谱(XRF)分析、傅里叶红外(FT-IR)和X射线光电子能谱(XPS)分析进行表征分析,探讨催化剂失活机制.结果表明: 活性检测375 ℃下运行后催化剂的脱硝效率(46%)和比表面积(40 m2/g)相对于新鲜催化剂(84%,49 m2/g)都有所下降,同时表面的活性钒V5+和化学吸附氧Oα由56%和34%分别下降至46%和24%,并且有大量盐类沉积及少量活性组分的损失,SEM和XRD的结果表明运行后催化剂表面存在严重烧结现象.因此,催化剂表面的烧结、还原能力的下降、盐类沉积以及活性组分的挥发都与催化剂活性下降有关.

Abstract:

The  fresh and used catalyst(25 000 h)samples which are both from selective catalytic reduction(SCR) equipment of a 1 000 MW coal-fired power plant were examined and  characterized by means of scanning electron microscope (SEM) X-ray diffraction (XRD),brunauer, emmett and telle(BET), X-ray fluorescence (XRF), Fourier transform infra-red (XPS) and X-ray photoelectron spectroscopy (XPS), and the influencing  factors causing catalyst deactivation were explored. The  deNOx activity (84%) at 375 ℃ and the specific surface area(49 m2/g)of the fresh catalyst were a little more than those of the used catalyst (46% , 40 m2/g ). The activity vanadium V5+ and surface chemisorbed oxygen Oα contents in the used catalyst were respectively increased from 46% and 24% to 56% and 34% compared to the fresh one, and large quantities of sulfates deposited on the surface as well as the volatilization of active ingredients was also found. Moreover, the results of SEM and XRD showed that the thermal sintering occurred on the surface of the used catalyst. Consequently, the V2O5-WO3/TiO2 catalyst deactivation could be attributed to the valence change of V and W atom, thermal sintering, impurities in deposit, and the decreasing of the specific surface area.

出版日期: 2015-08-28
:  X 511  
基金资助:

浙江省自然科学基金资助项目(LZ12E08002)

通讯作者: 施耀,男,教授     E-mail: shiyao@zju.edu.cn
作者简介: 陈艳萍(1987-),女,硕士生,从事燃煤燃气与脱硝催化剂的活性评价与再生研究.E-mail:aiyacheny@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈艳萍,吴思明,卢慧剑,魏博伦,何奕,施耀. MW燃煤电厂钒钛系脱硝催化剂失活原因分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.03.0231 000.

CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.03.0231 000.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.03.0231 000        http://www.zjujournals.com/eng/CN/Y2015/V49/I3/564

[1] TIAN H Z,LIU K Y,HAO J M,et al. Nitrogen oxides emissions from thermal power plants in China∶current status and future predictions[J].Environmental Science and Technology,2013,47(17):11350-11357.
[2] 云端,宋蔷,姚强. V2O5 -WO3 / TiO2 SCR 催化失活机理及分析[J]. 煤炭转化,2009,32(1):91-96.
YUN Duan,SONG Qiang,YAO Qiang. Mechanism and analysis of SCR catalyst deactivation[J]. Coal Conversion,2009,32(1):91-96.
[3] 姜烨,高翔,杜学森,等. 钾盐对V2O5 / TiO2 催化剂NH3 选择性催化还原NO 反应的影响[J]. 中国电机工程学报,2008,28(5):21-26.
JIANG Ye,GAO Xiang,DU Xue-sen,et al. Effects of potassium salts on selective catalytic reduction of NO with NH3 over V2O5/TiO2 catalysts[J]. Proceedings of the CSEE,2008,28(5):21-26.
[4] TANG Fu-shun,XU Bo-lian,SHI Hai-hua,et al. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3[J]. Applied Catalyst B,2010,94(10):71-76.
[5] 商雪松,陈进生,赵金平,等. SCR 脱硝催化剂失活及其原因研究[J]. 燃料化学学报,2011,39(6):465-470.
SHANG Xue-song,CHEN Jin-sheng,ZHAO Jin-ping,et al. Discussion on the deactivation of SCR denitrification catalyst and its reasons[J]. Journal of Fuel Chemistry and Technology,2011,39(6):465-470.
[6] 张烨,徐晓亮,缪明烽. SCR脱硝催化剂失活机理研究进展[J]. 能源环境保护,2011,25(4):14-18.
ZHANG Ye,XU Xiao-liang,MIU Ming-feng. Advance in deactivation mechanism for SCR denitration catalyst [J]. Energy Environmental Protection,2011,25(4):14-18.
[7] 沈伯雄,熊丽仙,刘亭,等. 纳米负载型V2O5 -WO3 / TiO2 催化剂碱中毒及再生研究[J]. 燃料化学学报,2010,38(1):85-90.
SHEN Bo-xiong,XIONG Li-xian, LIU Ting,et al. Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology,2010,38(1):85-90.
[8] 王春霞,叶志平,吕力行,等. 烟气脱硝催化剂中载体TiO2对催化性能的影响[J].高校化学工程学报,2013,27(5):896-902.
WANG Chun-xia, YE Zhi-ping, LV Li-xing, et al. Influence of TiO2-Supports on the catalytic properties of catalysts for De-NOx in flue gas[J]. Journal of Chemical Engineering of Chinese Universities, 2013,27(5):896-902.
[9] 朱崇兵,金保升,仲兆平,等. V2O5-WO3/TiO2烟气脱硝催化剂的载体选择[J]. 中国电机工程学报,2008,28(11):41-47.
ZHU Chong-bin, JIN Bao-sheng, ZHONG Zhao-ping, et al. Selection of carrier for V2O5-WO3/TiO2 De-NOx ctalyst[J]. Proceedings of the CSEE, 2008,28(11):41-47.
[10] 宋晋. 微波-乙醇溶液辅助V2O5-WO3/TiO2 SCR催化剂再生试验研究[D]. 杭州:浙江大学,2014:30-40.
SONG Jin. Study on the microwave-ethanol assisted regeneration of V2O5- WO3/ TiO2 SCR catalyst[D].Hangzhou: Zhejiang University,2014:30-40.
[11] ZHENG Yuan-jing,JENSEN A D,JOHNSSON J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Applied Catalysis B:Environmental,2005,60(3):253-264.
[12] 云端,邓斯理,宋蔷,等. V2O5-WO3/TiO2系 SCR催化剂的钾中毒及再生方法[J]. 环境科学研究,2009,22(6):730-735.
YUN Duan,DENG Si-li,SONG Qiang,et al. Potassium Deactivation and regeneration Method of V2O5-WO3/TiO2 SCR Catalyst[J]. Research of Environmental Science, 2009,22(6):730-735.
[13] 姜烨,高翔,吴卫红,等. 选择性催化还原脱硝催化剂失活研究综述[J]. 中国电机工程学报,2013,33(14):18-31.
GAO Ye,GAO Xiang,WU Wei-hong,et al. Review of the deactivation of selective catalytic reduction deNOx catalysts[J]. Proceedings of the CSEE,2013,33(14):18-31.
[14] KAMATA H, TAKAHASHI K, ODENBRAND C U I. The role of K2O in the selective reduction of NO with NH3 ver a V2O5-WO3/TiO2 commercial selective catalytic reduction catalyst[J]. Journal of Molecular Catalysis A:Chemical, 1999,139(18):189-198.
[15] 崔力文. V2O5-WO3/TiO2 SCR催化剂再生试验研究[D]. 杭州:浙江大学,2012: 26-46.
CUI Li-wen. Study on the regeneration of V2O5-WO3/TiO2 SCR catalyst[D]. Hangzhou: Zhejiang University, 2012:26-46.
[16] KHODAYARI R,ODENBRAND C U I.Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity[J]. Applied Catalysis B:Environment,2001,33(3):277-291.
[17] 于艳科,何炽, 陈进生,等. 电厂烟气脱硝催化V2 O5-WO3 / TiO2 失活机理研究[J]. 燃料化学学报,2012,40(11): 1359-1365.
YU Yan-ke, HE Chi,CHEN Jin-sheng,et al. Deactivation mechanism of de-NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant[J]. Journal of Fuel Chemistry and Technology,2012,40(11): 1359-1365.
[18] 陈建军,李俊华,柯锐,等. 钒和钨负载量对V2O5-WO3/TiO2表面形态及催化性能的影响[J]. 环境科学,2007,28(9):1949-1953.
CHEN Jian-jun,LI Jun-hua,KE Rui,et al. Effect of Vanadium and tungsten loadings on the surface characteristics and catalytic activities of V2O5-WO3/TiO2 catalysts[J]. Environmental Science,2007,28(9):1949-1953.
[19] TOPSE N Y,DUMESIC J A,TOPSE H.Vanadia/Titania Catalysts for selective catalytic reduction of nitric oxide by ammonia[J]. Journal of Catalysis,1995,6(12):241-252.
[20] CHEN Liang,LI Jun-hua,GE Mao-fa. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal,2011,170(11):531-537.

[1] 陈文聪, 侯艺文, 吴建, 王莉红. 化纤行业PM2.5和VOCs排放特性研究[J]. 浙江大学学报(工学版), 2017, 51(1): 145-152.
[2] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[3] 朱燕群, 杨业, 黄建鹏, 林法伟, 马强, 徐超群, 王智化, 岑可法. 橡胶厂60000 m3/h炭黑干燥炉烟气臭氧脱硝试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1865-1870.
[4] 张军, 李存杰, 郑成航, 翁卫国, 朱松强, 王丁振, 高翔, 岑可法. 筛板塔细颗粒物协同脱除特性实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1516-1520.
[5] 邱珊, 陈聪, 邓凤霞, 冀雅婉, 丁晓, 马放. 石墨电极E Fenton法处理罗丹明B废水[J]. 浙江大学学报(工学版), 2016, 50(4): 704-713.
[6] 周斌,周昊,王建阳,岑可法. 神华煤灰掺混木屑灰在O2/CO2气氛下的烧结特性[J]. 浙江大学学报(工学版), 2016, 50(3): 468-476.
[7] 周旭萍, 方梦祥, 项群扬, 蔡丹云, 王涛, 骆仲泱. 氨基酸盐吸收二氧化碳过程的传质特性[J]. 浙江大学学报(工学版), 2016, 50(2): 312-319.
[8] 宋祖威, 仲兆平, 张波, 吕子婷, 丁宽. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 2016, 50(2): 333-340.
[9] 鲍强, 周昊, 刘建成, 朱国栋, 时伟, 岑可法.
新型CeO2-V2O5/TiO2-SiO2催化剂高效抗碱金属中毒性能
[J]. 浙江大学学报(工学版), 2015, 49(10): 1855-1862.
[10] 方梦祥, 江文敏, 王涛, 项群扬, 卢佳汇, 周旭萍. 基于实验的直接蒸气再生CO2系统模拟及优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1565-1571.
[11] 姚水良,赵一帆,张媛,倪洁操,吴祖良. 多层介质阻挡放电处理柴油机尾气颗粒物[J]. 浙江大学学报(工学版), 2015, 49(1): 157-161.
[12] 陈艳萍,吴思明,卢慧剑,魏博伦,何奕,施耀. MW燃煤电厂钒钛系脱硝催化剂失活原因分析[J]. 浙江大学学报(工学版), 2014, 48(10): 0-1.
[13] 吴祖良, 谢德援, 陆豪, 姚水良, 高翔2. 介质阻挡放电废气中萘的降解特性和机理[J]. 浙江大学学报(工学版), 2014, 48(6): 1120-1126.
[14] 王磊,王重华,宁平,蒋明,覃扬颂. Ca(OH)2黏土混合物的固磷固硫作用[J]. J4, 2013, 47(5): 874-882.
[15] 汪明喜, 方梦祥, 汪桢, 潘一力, 骆仲泱. 相变吸收剂对CO2吸收与再生特性[J]. J4, 2013, 47(4): 662-668.